
www.manaraa.com

Designing programs that check their work�Manuel BlumComp. Sci. DivisionU. of CaliforniaBerkeley, CA 94720 Sampath KannanyComp. Sci. DivisionU. of CaliforniaBerkeley, CA 94720Subject Classi�cation D.2.4 F.2.0 F.3.1 G.3AbstractA program correctness checker is an algorithm for checking the output of a computation.That is, given a program and an instance on which the program is run, the checker certi�eswhether the output of the program on that instance is correct. This paper de�nes the concept ofa program checker. It designs program checkers for a few speci�c and carefully chosen problemsin the class FP of functions computable in polynomial time. Problems in FP for which checkersare presented in this paper include Sorting, Matrix Rank and GCD. It also applies methods ofmodern cryptography, especially the idea of a probabilistic interactive proof, to the design ofprogram checkers for group theoretic computations.Two strucural theorems are proven here. One is a characterization of problems that can bechecked. The other theorem establishes equivalence classes of problems such that whenever oneproblem in a class is checkable, all problems in the class are checkable.�Supported by NSF Grant #CCR88-13632ycurrently at Department of Computer Science, University of Arizona, Tucson, Arizona 857211

www.manaraa.com

1 IntroductionIn this paper we introduce the concept of a program checker. A program checker for a program Pis itself a program C. For any instance I on which program P is run, C is run subsequently. Ceither certi�es that the program P is correct on I or declares P to be buggy.There have been other methods proposed for gaining con�dence in the output of programs. Forexample, program veri�cation[9] seeks to achieve this by proving that a program is correct. Programveri�cation su�ers from the problem that it is very hard to prove programs correct. It has also beenargued that proofs of correctness of programs do not improve our con�dence in their correctnessbecause of the nature of these proofs[13]. For a recent discussion of the role of veri�cation insoftware development see [3].In program testing[12] we run the program on test inputs for which the output is known and seeif the program output matches the expected output. Testing is a fairly ad hoc technique. Thereare no general methods for generating test data and no theorems are proven about the behavior ofa program that passes the tests.In addition there has been work in the the theoretical computer science community on theconcept of helping[27, 35] which may be regarded as a deterministic version of checking.Program checking is easier to do than veri�cation; it yields mathematical proofs about pro-gram behavior unlike testing; it allows coin-tossing, greatly enhancing the power of the checker incomparison to the model of helping above.The ideas in this paper arise from cryptography, probabilistic algorithms, and program testing.Particularly important for this work are the interactive proofs of Goldwasser, Micali and Racko�[19]and subsequent related work. As will be seen, several of the correctness checkers constructed in2

www.manaraa.com

this paper use probabilistic interactive proofs as a �rst step in the design. Equally important forthis work are the papers on randomized algorithms of Rabin[33] and Freivalds[16]. The latter,remarkably enough, includes excellent program checkers for integer, polynomial, and matrix multi-plication. The works of Budd and Angluin[10] and Weyuker[38] are relevant in that they too seekto give program testing a rigorous mathematical basis.The notion of program checking as used in this paper was �rst formally de�ned by Blum andKannan[6]. This paper draws heavily from [6]. In [6] the concept of program checking was de�ned,checkers were exhibited for some group-theoretic problems and for selected problems in P , and theclass of problems having polynomial-time checkers was characterized.Since then several papers have shed light on this problem. Blum, Luby, and Rubinfeld[7]extend the notion of program checking one step further in several directions. They focus on a largecollection of numerical problems that includes integer multiplication and modular multiplication.For these problems they show that it is not only possible to detect errors in programs, but also tocorrect errors in programs that are `mostly correct.' They also provide e�cient tests for determiningwhether a program is `mostly correct.' In the process their results yield some of the few programtesters with provable performance. If a program passes a self-test a la [7] on instances of some sizen, then it will be possible to prove a theorem that says that with high probability, P is correct on`most' instances of size n, where `most' can be precisely quanti�ed.Another concept introduced in [7] is that of a library of programs. This allows a checker for oneproblem in the library to call programs for other problems in the library as long as all the programsin the library can be checked by these means. This extension allows for the design of e�cient andsimple checkers for problems which had hitherto had much more complex checkers.Adleman, Huang, and Kompella[1] provide checkers for several number-theoretic problems in-3

www.manaraa.com

cluding integer greatest common divisor. In [6] it was conjectured that an e�cient checker forg.c.d. would be hard to �nd. Lipton[29] considers programs that have been tested in some wayto ensure that they are mostly correct and shows how one can correct the errors in the programby transforming a given instance to several random instances and computing the answer to thegiven instance from the answers to the random instances. Lipton[29], building on the work ofBeaver and Feigenbaum[4], shows how polynomials in general and the permanent in particular areamenable to this technique. Rubinfeld[34] extends the notion of checking to parallel checking whileBlum et al.[8] extend it to programs that store and retrieve data from unreliable memory. Kannanand Yao[24] have considered the problem of checking coin-tossing programs that produce speci�edoutput probability distributions.There are several concepts in complexity theory that are intimately related to checking. Twosuch concepts are coherence and random-self-reducibility. These concepts have been consideredextensively in the literature. De�nitions of these concepts and their relation to program checkingcan be found for example in [5, 14].The rest of this paper is organized as follows: A more formal description of the program checkingmodel is given in section 2. In section 3 we illustrate the concept with the prototypical exampleof the graph isomorphism problem. In section 4 we derive structural theorems which allow us toderive checkers for one problem from checkers for others. In section 5 we present some programcheckers for group-theoretic problems. This section demonstrates the close connections between thedesign of program checkers and the design of interactive proofs. In section 6 we present checkersfor a number of common functions that can be computed in FP . The speci�c problems consideredare Extended GCD, Sorting, and Matrix Rank. Finally in section 7 we characterize the class ofproblems that have polynomial-time checkers. 4

www.manaraa.com

2 Program CheckersLet � denote a (computational) decision or search problem. For x an input to �, let �(x) denotethe output of �. Let P be a deterministic program (supposedly) for � that halts on all instancesof �. We say that such a program P has a bug if for some instance x of �, P (x) 6= �(x).De�ne an e�cient program checker C� for problem � as follows: CP� (I ; k) is any probabilistic(expected-poly-time) oracle Turing machine that satis�es the following conditions, for any programP (supposedly for �) that halts on all instances of �, for any instance I of �, and for any positiveinteger k (the so-called `security parameter') presented in unary:1. If P has no bugs, i.e., P (x) = �(x) for all instances x of �, then with probability � 1� 1=2k,CP� (I ; k) = CORRECT (i.e., P (I) is CORRECT).2. If P (I) 6= �(I), then with probability � 1� 1=2k, CP� (I ; k) = BUGGY (i.e., P is BUGGY).This probability is computed over the sample space of all �nite sequences of coin ips that Ccould have tossed.Some remarks are in order:i. The running time of C above includes whatever time it takes C to submit inputs to andreceive outputs from P , but excludes the time it takes for P to do its computations.ii. In the above de�nition, if P has bugs but P (I) = �(I), ie. buggy program P gives the correctoutput on input I , then CP� (I ; k) may output CORRECT or BUGGY.It is assumed that any program P for problem � halts on all instances of �. This is done inorder to help focus on the problem at hand. In general, however, programs do not always halt,and the de�nition of a `bug' must be extended to cover programming errors that slow a program5

www.manaraa.com

down or cause it to diverge altogether. In this case, the de�nition of a program checker must alsobe extended to require the additional condition:3. If P (x) exceeds a precomputed bound �(x) on the running time, for x = I or any other valueof x submitted by the checker to the oracle, then the program checker is to sound a warning,namely CP� (I ; k) = TIME.In the remainder of this paper, it is assumed that any program P for a problem � halts on allinstances of �; so condition 3 is everywhere suppressed.It is possible to extend the notion of program checking to probabilistic algorithms in BPP. Inorder to do this, we simply run the program su�ciently often to make the probability of errorof (a correct) program much smaller than 1=2k. Then we simply treat the program as though itwere a deterministic program and check it accordingly. In the rest of the paper we only considerdeterministic programs with the assurance that all of the results about checkers for deterministicprograms can be extended to checkers for probabilistic programs.In this approach to program correctness the question naturally arises: If one cannot be surethat a program is correct, how then can one be sure that its checker is correct? This is a veryserious problem!One solution is to prove the checker correct. Sometimes, this is easier than proving the originalprogram correct, as in the case of the Extended GCD checker of section 6. Another possibilityis to try to make the checker to some extent independent of the program it checks. To this end,we make the following de�nition: Say that a (probabilistic) program checker C has the little ohproperty with respect to program P if and only if the (expected) running time of C is little oh ofthe running time of P . We shall generally require that a checker have this little oh property with6

www.manaraa.com

respect to any program it checks.The principal reason for this is to ensure that the checker is programmed di�erently from theprogram it checks. For instance, if there are two programs for a problem with the same runningtimes this de�nition disallows the checker from running one as a `check' for the other. This iswhat we desire in our checker. However, this de�nition does not necessarily constrain us to designe�cient checkers, for although the running time of the checker is little oh of the program's runningtime, this does not account for the time spent in calls to the program. If the checker only made onecall to the program, running the checker would not result in an increase in the asymptotic runningtime of the program. In general this is hard to achieve, but for a signi�cant subclass of problems(such as the ones considered in [7]) one can design checkers that run in time that is no worse than aconstant times the running time of the program being checked, taking into account the time spentrunning the program being checked.3 An Example: Graph IsomorphismWe present an example of a good checker. Our checker is an adaptation of Goldreich, Micali, andWigderson's interactive proof system for Graph Isomorphism (see [18]). The model in [18] relies onthe existence of an all-powerful prover. The prover is replaced here by the program being checked.The power of the program turns out to be su�cient to simulate the prover for this application.The checker that results is a practical way to check computer programs for graph isomorphism.Graph isomorphism is a problem with a lot of heuristics that work on most instances. Appendinga checker to a heuristic gives us con�dence in the output of the (possibly unproven) heuristic.The Graph Isomorphism decision problem is de�ned as follows:7

www.manaraa.com

Graph Isomorphism (GI):Input: Two graphs G and H .Output: YES if G is isomorphic to H ; NO otherwise.The checker CPGI(G;H ; k) checks program P on input graphs G and H .BeginCompute P (G;H).if P (G;H) =YES, thenUse P (as if it were bug-free) to search for an `isomorphism' from G to H .(This is done by a standard self-reduction as in Ho�mann[22, pages 24{27].)Check whether the resulting correspondence is an isomorphism.If not, return BUGGY; if yes, return CORRECTif P (G;H) =NO, thenDo k times:Toss a fair coin.if coin = heads thengenerate a random permutation G0 of G.Compute P (G;G0).if P (G;G0) =NO then return BUGGYif coin = tails thengenerate a random permutation H 0 of H .Compute P (G;H 0).if P (G;H 0) =YES then return BUGGY.8

www.manaraa.com

End-doReturn CORRECT.EndThe above program checker correctly checks any computer program whatsoever that is pur-ported to solve the graph isomorphism problem. Even the most bizarre program designed to foolthe checker will be caught, when it is run on any input that causes it to output an incorrect answer.The following theorem proves this formally:Theorem 3.1 : If P is a correct program for graph isomorphism, then CPGI always outputs correct.If P (G;H) is incorrect then Prob(CPGI outputs correct) � 12k . Moreover, CPGI runs in polynomialtime.Proof: Clearly CPGI runs in polynomial time in our way of counting the running time of the checker.If P has no bugs and G is isomorphic to H , then CPGI(G;H ; k) constructs an isomorphism fromG to H and (correctly) outputs CORRECT.If P has no bugs and G is not isomorphic to H , then CPGI(G;H ; k) tosses coins. It discovers thatP (G;G0) =YES for all G0 and P (G;H 0) =NO for all H 0, and so (correctly) outputs CORRECT.If P (G;H) is incorrect, there are two cases:1. If P (G;H) =YES but G is not isomorphic to H , then CPGI fails to construct an isomorphism(since none exists) and (correctly) outputs BUGGY.2. If P (G;H) =NO but G is isomorphic to H , then the only way that C will return CORRECTis if P (G;G0orH 0) =YES whenever the coin comes up heads and NO when it comes up tails.But G is isomorphic to H . Since G and H are permuted randomly to produce G0 and H 0, G09

www.manaraa.com

and H 0 have the same probability distributions. Therefore P correctly distinguishes G0 fromH 0 only by chance, i.e., for just 1 of the 2k possible sequences of coin tosses.4 Beigel's TheoremThe following theorem is due to Richard Beigel:Theorem 4.1 (Beigel) Let �1; �2 be two polynomial-time equivalent decision problems. Thenfrom any polynomial time checker for �1 it is possible to construct a polynomial-time checker for�2.Proof: For simplicity assume initially that �1 and �2 are decision problems, reducible to each otherby Karp reductions. We have a checker C�1 for �1 and a program P2 for �2. We also have two waypolynomial-time transformations, f1;2 and f2;1 going from �1 to �2 and from �2 to �1 respectively.The existence of f1;2 gives us a program P1 for �1 de�ned in terms of f1;2 and P2. P1(x) is de�nedto be P2(f1;2(x)). In our way of counting the running time of the checker checking program P2, acall to P1 can be accomplished in polynomial time since f1;2 is a polynomial-time function and acall to P2 counts as 1 step.To check P2 on instance y we compute P2(y) and transform y to an instance z for �1 using thefunction f2;1. We then use the checker C�1 to check the correctness of P1 on z. Any call that thechecker makes to P1, including the call on the instance z, is transformed in polynomial time to acall to P2 by the procedure described above. Being convinced about the correctness of P1 on zconvinces us of the correctness of P2 on y. If P2 is correct, then P1, which is de�ned in terms of P2,will be too. Thus the checker will �nd that P1 is correct on z, convincing us that P2 is correct on10

www.manaraa.com

y. If P2 is wrong on y, there are two cases. If P1 is correct on z, we will discover the contradictionimmediately. If P1 is wrong on z, the checker C�1 is designed to catch precisely this situation andit will declare P1 to be buggy. Thereby we will be convinced of the bugginess of P2.The checker for �2 described above runs in polynomial time. Let n be the length of the instanceof �2 being checked. The running time of the checker for �2 can be broken down into the followingthree components.� The running time of the checker for �1 on an instance whose length is polynomial in n.� One application of the transformation f2;1 on an input of length n.� A polynomial number of applications of the transformation f1;2 on inputs whose lengths arepolynomial in n.We show now that the theorem holds even when the problems are possibly search problems andthe reductions between the problems are Cook reductions. In this case also we have a program P1for �1 de�ned in terms of P2. The proof of correctness of the checker essentially follows along thelines of the proof in the case of Karp reductions. There are just more details to check. The programP1 will make polynomially many calls to P2 on each input. The transformation f1;2 is replaced bya program which takes an instance of �1 and in polynomial time produces the set of instances of�2 to be queried. So also the transformation f2;1.One particular application of Beigel's theorem is to graph isomorphism. Since graph isomor-phism is known to have a polynomial-time checker, all of the problems that are polynomial-timeequivalent to graph isomorphism also have such checkers.It is important to note that the statement of Beigel's theorem requires the equivalence of �1and �2. The following example suggests that a reduction in one direction is not su�cient.11

www.manaraa.com

Observe that Group Isomorphism (GI) reduces to Extended Group Isomorphism (EGI) where1. groups are given by multiplication tables, and2. GI di�ers from EGI in that a YES answer in the former is an explicit isomorphism in thelatter.We know an e�cient checker for EGI but not for GI.4.1 Generalizing Beigel's TheoremLet F be a complexity class and let �1 and �2 be problems which are reducible to each other in F .Suppose we have a checker for �1 in F . Under what conditions does that give us a checker for �2in F? We consider the situation in which F is a deterministic time complexity class. The situationis similar if we replace time complexity by circuit size or circuit depth.Time Complexity Classes and NCLet f : N ! N be a time complexity function. Suppose having an algorithm whose running time isbounded by f(n) on inputs of length n puts a problem in F . Then we will call f a time complexityfunction for F .We will call a complexity class F robust if for any two time complexity functions f and g for F ,f + g, f � g, and f(g) are all time complexity functions for F . In other words, F is a robust class ifthe sum, product and composition of any two time complexity functions for F is a time complexityfunction for F . Examples of robust time complexity classes include P and logO(1)(n).Theorem 4.2 Let F be a robust time complexity class, �1 and �2 two problems reducible to eachother in F and C�1 a checker for �1 in F . Then there is a checker, C�2 for �2 in F .12

www.manaraa.com

Proof (sketch): The checker C�2 is constructed along the same lines as the checker constructed inBeigel's theorem. For the running time analysis note that the de�nition of robustness is preciselythe one needed to guarantee that C�2 lies in F . This uses the fact that an algorithm with a runningtime of f(n) can make at most f(n) calls to an oracle (such as the program being checked) andcan only produce outputs (transformed instances) whose lengths are bounded by f(n) on an inputof length n. Thus the running time of the checker for �2 can be bounded by sums, products, andcompositions of the running times of the two reductions and of the checker for �1. This is true evenin the case that the reductions between the problems are Cook reductions.Corollary 4.1 If �1 and �2 are equivalent under NC-reductions and �1 has an NC-checker, thenso does �2.Proof: Although NC is not a time complexity class, the proof follows from the robustness ofthe class NC. A `complexity function' for NC can be thought of as an ordered pair of functions,(size(n); depth(n)). size(n) is a function from the class P and depth(n) is a function from logO(1)n.Sums, products, and compositions of complexity functions are computed component-wise on theordered pair representing the function since the arguments in the theorem about the robustnessof a time complexity class holds for depth and size as well. The robustness of the classes, P andlogO(1)n establishes the robustness of the complexity functions in NC. This in turn implies thatthe checker for �2 is in NC.4.2 NC-checkers for Problems in PUsing the generalized version of Beigel's theorem, we can prove that all P -complete problems havecheckers in NC. 13

www.manaraa.com

Theorem 4.3 All P -complete problems have checkers in NC.Proof: In the light of the generalized version of Beigel's theorem, it is su�cient to prove thatsome P -complete problem has a checker in NC. This is because all P -complete problems areNC reducible to each other. The particular P -complete problem for which we will provide anNC-checker is the Lexicographically First Maximal Independent Set (LFMIS) [11] problem.4.3 An NC-checker for LFMISLexicographically First Maximal Independent Set (LFMIS)Input: A Graph G with the vertices numbered from 1 to n and a vertex v of the graph.Output: `Yes' if the LFMIS contains the vertex v and `No' if the LFMIS does not.We will present the NC-checker informally as an algorithm for a PRAM. For details on thePRAM model see, for instance, [26].Step 1: The ith processor asks whether vi is in the LFMIS. Thus the processors determine theLFMIS.Step 2: For this step, associated with each vertex is a group of n processors. The ith group ofprocessors are associated with vi. They assume that the answers obtained in step 1 on querieson v1; : : : ; vi�1 are correct. With this assumption they check to see if the answer to the queryon vi is correct. This can be done in O(1) time, since vi is in the LFMIS i� there is no edgefrom vi to a smaller numbered vertex in the LFMIS.Thus in the CRCW PRAM model the above checker runs in O(1) time and uses O(n2) proces-sors. Doing step 2 more carefully allows us to reduce the processor count to O(n+m).14

www.manaraa.com

As already mentioned �nding an NC checker for LFMIS gives us NC-checkers for all P -completeproblems. It is interesting that we can prove that the `most di�cult' problems in P have checkersin NC, although we don't know whether all the decision problems in P have checkers in NC. Whilethere areNC-checkers for all P -complete problems, a big open question is whether all NP -completeproblems have checkers in P . In fact there is some negative evidence on this question[15].5 Checkers for Group Theoretic ProblemsMany group theoretic problems have checkers resembling that for graph isomorphism. Subsection5.1 shows this for two fairly general classes of examples. 5.2 gives a general approach to checkerconstruction that works particularly well for group theoretic problems.Why all the work on group theoretic problems? Group theory is a rich source of problemswith checkers. Very elementary properties of groups such as Lagrange's theorem can often beexploited in the design of checkers. The structure of groups often implies relationships among thecorrect answers to di�erent instances. These relationships can be used to check the consistencyof programs. Sometimes these consistency checks can be proven to be su�cient for ensuring thecorrectness of a program. For instance, the checker for graph isomorphism that was described in theintroduction can be viewed as a group theoretic checker since the problem of graph isomorphism ispolynomial-time equivalent to the problem of determining the automorphism group of a graph[31].For graph isomorphism we essentially check the consistency of the program in the case that theprogram says that the input graphs G and H are not isomorphic. The structure of the problemimplies that1. G and a random permutation of G are isomorphic and15

www.manaraa.com

2. If G is not isomorphic to H , then G is not isomorphic to a random permutation H 0 of H .Computation has been used extensively as a tool in group theory. In fact the classi�cationof �nite simple groups[21] has both motivated and been aided by computer calculations. Theclassi�cation has shown that there are just 26 groups that do not belong to any in�nite family ofgroups. These 26 groups are referred to as the sporadic groups. The existence of some of thesesporadic groups was con�rmed only by computer construction. For all of these reasons checkinggroup theoretic problems is a very fruitful endeavour.5.1 The Equivalence Search and Canonical Element ProblemsThe problems (and corresponding checkers) described in this subsection are all stated in terms ofa set S of elements and a group G acting on S.For a; b in S, de�ne a �G b if and only if g(a) = b for some g 2 G.Let ESP (S;G) denote theEquivalence Search ProblemInput : a; b in SOutput : g such that g(a) = b if a �G b;NO otherwise.Proposition 5.1 Let ESP (S;G) be the Equivalence Search Problem for given S and G. Supposethere exists an e�cient probabilistic algorithm to �nd a random g 2 G according to the uniformdistribution. Then there is an e�cient program checker CPESP (S;G) for the problem ESP (S;G).16

www.manaraa.com

Examples of the Equivalence Search Problem include graph Isomorphism, quadratic residuosity,a generalization of discrete log and games such as Rubic's cube. Other examples arise in knot theory,block designs, codes, matrices over GF (q), Latin Squares [28, page 32] and in applications of theBurnside and Polya theorems[32].Related to the Equivalence Search Problem is the Equivalence Decision Problem de�ned by:Equivalence Decision Problem (EDP)Instance: a; b 2 SQuestion: Is a �G b?It would be nontrivial to prove a similar proposition for EDP because ESP does not seemreducible to EDP as the following argument indicates:Recall that for N a positive integer, Z�N denotes the group of positive integers less than N thatare relatively prime to N under the group operation of multiplication mod N . For p a prime, letS = Z�p and G = Z�p�1, where the action of g 2 G on a 2 S maps a to ag mod p. Observe thata �G b if and only if b = ag mod p for some g in Z�p�1.Now suppose we are given an oracle A for factoring. To �nd g such that b = ag mod p isessentially to solve the discrete log problem which in cryptographic circles is believed to not besolvable in polynomial time, even given the oracle for factoring. On the other hand, the EDPis solvable in polynomial time given an oracle for factoring. The proof consists in showing thatb = ag mod p for some g if and only if order(b)jorder(a). This is because xorder(a) = 1 mod p hasexactly order(a) solutions, namely a; a2; : : : ; aorder(a) � 1. Finally, order(a) and order(b) can bedetermined from the factorization of p� 1. 17

www.manaraa.com

Canonical Element Problem (CEP)Input: a 2 SOutput: (c; g) where c is the (unique) canonical element in the equivalence class of a, and g 2 Gsatis�es g(a) = c.Proposition 5.2 There is an e�cient program checker for the canonical element problem, providedthere is a probabilistic procedure to select a random g 2 G e�ciently.Remark: If the CEP program should fail by having two or more canonical elements in someclass, then we de�ne the (true) canonical element of that class to be the unique element, if any, towhich more than half the elements of the class are mapped by the program.5.2 Group Intersection ProblemWe use a two-step approach in designing a checker for group intersection. We �rst design aninteractive proof system and then show that this interactive proof system can be converted into achecker. Babai and Moran[2] have independently (and earlier) provided an interactive proof systemfor group intersection.We use the checker for group intersection and Beigel's trick to obtain checkers for severalproblems that are known to be polynomially equivalent to group intersection.First, we briey discuss the various representations of groups on the computer. Three com-mon representations are used. In increasing order of di�culty of manipulation they are: Themultiplication table representation, the permutation group representation, and the abstract grouprepresentation. 18

www.manaraa.com

The multiplication table representation explicitly speci�es the product of each pair of groupelements. In the permutation representation the group is thought of as acting on a set. Thegroup elements are permutations and the group operation is composition. Usually the group isspeci�ed by specifying a few (polynomially many in the size of the set) generating permutations.In the abstract group representation, the group is presented by generators which are related by therelations speci�ed amongst them. Only relations implied by the speci�ed relations hold betweenthe generators. This completely speci�es the group.We now describe the checker for the group intersection problem which is the following:Group Intersection ProblemInput: Two permutation groups G and H speci�ed by generators.Output: Generators for G \H .Let n be the size of the set S on which G and H act. In general the speci�cation of a generatingset for G requires
(n) bits and can be done in poly(n) bits. Hence we will take the input lengthto be n. No probabilistic polynomial-time algorithm is known for solving the group intersectionproblem. This is not surprising since graph isomorphism is polynomial-time reducible to groupintersection. The following interactive proof protocol works for group intersection:5.2.1 IP Protocol1. The prover sends the veri�er a set of permutations of [1; 2 : : : ; n] which supposedly generateG\H .2. The veri�er checks that the elements sent by the prover actually lie in G \H . This involvestesting membership in G and H which the veri�er can do by the methods of [17]. As a19

www.manaraa.com

consequence the veri�er is convinced that the elements sent by the prover either generateG\H or a proper subgroup of it.3. The veri�er sends the prover an element � 2 GH which he obtains by selecting randomelements a 2 G and b 2 H and multiplying them together.4. The prover sends back a factorization of � as a0b0 with a0 2 G and b0 2 H .5. The veri�er checks that a�1a0 is an element of the group generated by the generators thatthe prover provided in step 1.Theorem 5.1 The above protocol with steps 3-5 repeated k times allows the prover only a 1=2kprobability of cheating the veri�er.Proof: Denote the group generated by the generators that the prover sends in step 1 by M . It isclear after step 2 that M � G\H . Steps 3 and 4 are aimed at giving the veri�er a random elementof G \H . We have the following lemma to that e�ect.Lemma 5.1 With the notation as in the protocol, a�1a0 is a random element of G\H.Proof: Suppose � = ab with a 2 G and b 2 H and x 2 G\H . Then � = (ax)(x�1b) where ax 2 Gand x�1b 2 H . Thus from these two factorizations of � the element recovered by computing a�1a0is x 2 G \H . Thus for each x 2 G \H there is a unique factorization of � which along with thefactorization � = ab yields x.All that remains to be proved is that every pair of factorizations of � correspond to an elementof G \ H . Again suppose that � = ab and � = a0b0 are two factorizations of �. Then ab = a0b0.Rearranging we have a�1a0 = b(b0)�1. On the left hand side of the last equation we have an element20

www.manaraa.com

of G and on the right hand side an element of H . Since they are equal, both elements must belongto G\H .The randomness of the factorization ab of � implies the randomness of the element of G \ Hobtained by this procedure since the prover does not know the factorization ab used by the veri�er.The proof of lemma 5.1 essentially completes the proof of the theorem. We use Lagrange'stheorem to note that if M is a proper subgroup of G\H then a random element of G\H belongsto M with probability at most a half. Performing k repetitions of steps 3-5 reduces the errorprobability to at most (1=2)k.5.2.2 Converting the IP Protocol into a CheckerThe veri�er in the above protocol asks the prover to factor certain elements of GH . To convertthis IP protocol into a checker one must show that a program for group intersection can be used tofactor elements of GH . If the Factorization Search Problem (FSP) were shown equivalent to thegroup intersection problem one could use a program for group intersection to factor. FSP is thefollowing problem:Factorization Search Problem (FSP)Input: Two permutation groups G and H and a permutation �.Output: No, if � is not in GH . a 2 G; b 2 H such that ab = � otherwise.The associated Factorization Decision Problem (FDP) is known to be equivalent to groupintersection[22, pages 236-241]. The following Lemma shows the equivalence of FSP and FDP.Lemma 5.2 FDP is equivalent to FSP. 21

www.manaraa.com

Proof: It is obvious that FDP reduces to FSP. All that remains to be shown is that FSP reducesto FDP. The proof relies on the notion of `strong generators' introduced by [17].Assume that we have strong generators for G and H as de�ned in Furst, Hopcroft, and Luks[17].This can be assumed without loss of generality because any set of generators can be converted toa set of strong generators in polynomial time.Here is a brief description of the notion of strong generators, MG, for the group G. MG is ann x n matrix where n is the size of the permutation domain. The matrix has no entries below thediagonal. Above the diagonal, in position ij we have an entry if and only if there is a permutationin G that �xes (pointwise) the elements 1; 2; : : : ; i� 1 and moves i to j. In case such a permutationexists, the ijth entry is any such permutation in G. It is convenient (and customary) to make thediagonal entries be the identity permutation.Some properties of this representation are given here without proof. Every element of G can beexpressed in a unique way as a product, �n�n�1 : : : �1 where �i is from row i of MG. We are usingthe convention here that in a string of permutations the leftmost one acts �rst and the rightmostone last. As a consequence of the previous fact, jGj is the product of the numbers of non-emptyentries in each row of MG. Another consequence is that a random element of G can be obtainedby multiplying together random elements in each of the rows of MG. Also, G1, the subgroup of Gthat �xes the point 1, is generated by the entries in rows 2 through n of MG. Finally, membershipin G of a permutation � can be tested as follows: If � moves 1 to j, we look in position 1j for anentry. If none exists � is not in G. Otherwise, if �1 is the entry, ��1�1 �xes the point 1 and wemove on to the second row and check it for membership in G1. Proceeding thus we will either �ndthat � is not in G or �nd an expression for � as a product of entries in MG.22

www.manaraa.com

Suppose now that � is in GH . We consider H1, the subgroup ofH consisting of all permutationsthat �x the point 1. Since � is in GH , � = ab with a in G and b in H. Also b is equal to someproduct, �n�n�1 : : : �1 where �i is in the ith row of MH . Thus there is a permutation, �1, in the�rst row ofMH such that ab�1�1 is in GH1. We can use the oracle for FDP to �nd out which entryin the �rst row of MH has the above property. If this entry is �1 we consider ���11 and factor itin GH1. A factorization in GH1 will yield a factorization in GH of �. It can be seen that if thistechnique is applied recursively it yields a factorization of � in GH . This completes the reductionand shows that the IP protocol described can be converted into a checker.6 Problems in FPIn this section, some program checkers use their oracle just once (to determine O = P (I)) ratherthan several times. In such cases, instead of the program checker being denoted by CP� (I ; k), itwill be denoted by C�(I; O; k). The latter notation has the advantage of clarifying what must betested for. In cases where the checker is nonprobabilistic, it will be denoted by C� (I; O) instead ofC� (I; O; k).Many problems in FP have e�cient program checkers, and it is a challenge to �nd them. Inwhat follows, we give a fairly complete description of program checkers for just three problems inFP : Extended GCD (because it has one of the oldest nontrivial algorithms on the books), Sorting(because it is one of the most frequently solved problems), and Matrix rank (because it is mostunusual in that it seems to require a multicall checker with two-sided error).23

www.manaraa.com

6.1 Extended GCDThe problem of integer GCD is, given two integers a and b �nd the gcd d of a and b. Adleman,Huang and Kompella[1] have recently given a probabilistic checker for the problem. An extension ofthe problem makes it easy to check. The idea of extending a problem (without incurring additionalrunning time to solve the extended problem) is an important one in the area of program checking.Extended GCD .Input: Two integers a and b.Output: An integer d = gcd(a; b) and integers u; v such that d = u � a+ b � v.To check that d is the gcd, the checker has to perform only 5 arithmetic operations!� Check that d divides a and b. The validity of this check is obvious from the de�nition of thegcd. At this point we are convinced that d is a divisor of a and b.� Check that d = u � a + v � b. This is done with three arithmetic operations. To justify thischeck and show why these two checks should convince us that d is the gcd, we refer to thefollowing (standard) lemma.Lemma 6.1 Let a and b be positive integers. Then the smallest positive integer that can be ex-pressed as an integer combination of a and b is their gcd, d.6.2 SortingIt is hardly necessary to mention that sorting is one of the most commonly solved problems incomputer science. Because of this a large number of algorithms are available for sorting, some of24

www.manaraa.com

which are fairly complex to program. Thus it is necessary to check the output of these sortingprograms.Sorting is trivially checked in the comparison tree model. In this model, the inputs are thevariables x1; x2; : : : ; xn while the output is given by an ordering of the input variables: For somepermutation � of [1, : : : , n], the output is x�(1) � x�(2) � � � � � x�(n). The checker for sorting hasonly to con�rm that the output inequalities are all valid. This can be done using n�1 comparisons,in fact, using a linear number of operations in any reasonable model of computation. In general ifwe assume that the outputs point to the inputs that they came from, we can check sorting merelyby checking that the outputs are in the right order. In the RAM model of computation it is againeasy to check sorting in linear time. But the RAM does not reect many sorting scenarios. Wede�ne the problem of sorting and provide a reasonable model of computation.Sorting .Input: An array of integers X =[x1; : : : ; xn] representing a multiset.Output: An array Y consisting of the elements of X listed in non-decreasing order.Model of Computation: The computer has a �xed number of tapes, including one that containsX and another that contains Y . X and Y each have at most n elements and each element is in therange [0,a]. The random access memory has O(logn+log a) words of memory and each of its wordsis capable of holding an integer in the range [0,a]; in particular, each word can hold any element ofX [Y .� Single precision operations: +;�;�; =; <;= each take one step. Here = denotes integer divide.� Multi-precision operations: +;�; <;= take m steps on integers that are m words long. On25

www.manaraa.com

such integers, �; = take m2 steps.In addition the machine can do the usual operations. Each shift of the tape and each copy of aword on tape to the RAM or vice versa takes 1 step.In the model of computation described above it is easy to check that the output list Y is in orderin O(n) steps. We need also to check that X = Y as multisets. This can be done probabilisticallyin O(n) steps, but the right method depends on the relative sizes of a and n. If n > 2a a simplebucket sort works. We need a buckets for numbers in the range [0, a]. Since a < logn the randomaccess memory has space enough for a buckets. Thus we could run through the values in X andput each one in its appropriate bucket. We could then run through the elements in Y and takeeach one out of its appropriate bucket. If at any time the bucket we try to take a value out of turnsout to be empty, the checker declares the program to be buggy.The situation when n < 2a is more interesting. For this case we present the following twomethods for checking multiset equality.Method 1: This method (but not the speci�c and important choice of hash function) was �rstsuggested by Wegman and Carter[39]: Compute n = jX j and check that jY j = n. If so, select ahash function h : Z ! f0; 1g and compare h(x1)+ � � �+h(xn) to h(y1)+ � � �+h(yn). If h is randomand X 6= Y then with probability at least 1/2 the above sums will di�er. To see this remove fromX and Y any largest sub-multiset of elements that is common to both. The resulting X and Yare still the same size and their intersection is empty. Compute Pi6=1 h(xi) and Pi h(yi). If thetwo sums are equal, then setting h(x1) to 1 will distinguish X from Y . If the sums are di�erent,setting h(x1) to 0 will distinguish the two. In either case h has a probability of 1/2 of distinguishingbetween the two sets. Since a random function requires an enormous number of random bits wehave to replace the random function h above by a suitably chosen hash function.26

www.manaraa.com

Choosing an easy to compute hash function is di�cult. The Wegman-Carter hash function inparticular requires a random access memory and hence it cannot be implemented in our model ofcomputation. Here is a di�erent hash function that does work. Recall that n = jX j = jY j. Letm = n+1. Select a random prime p from the interval [1, 3�a�logm]. Set h(x) = mx mod p. Observethat X = Y if and only if Pmxi =Pmyi . Indeed if X = Y , then P(mxi) mod p =P(myi) mod pfor all primes p. If X 6= Y then Pmxi 6= Pmyi and as pointed out by Karp and Rabin[25]Pmxi mod p 6= Pmyi mod p for at least half of all primes in the interval [1, 3�a � logm]. Thechoice of the interval size arises from an estimate of how large Pmxi can get. Since the sum isover n terms and each term is bounded by ma, the sum is no bigger than n �ma. Since m = n+ 1,a bound for the sum is ma+1. The interval has then to be chosen to be a suitable constant timeslogma+1. Thus [25] shows that for primes randomly chosen in the interval [1, 3 �a � logm] the hashfunction has a probability of at least 1/2 of catching an error.Method 2: This idea was �rst suggested by Lipton[29] and more recently by Ravi Kannan[23].Let f(z) = (z � x1)(z � x2) � � �(z � xn) and g(z) = (z � y1)(z � y2) � � �(z � yn). Then X = Yas multisets i� f = g. Since f and g are polynomials of degree n, either f(z) = g(z) for all z orf(z) = g(z) for at most n� 1 values of z. A probabilistic algorithm can decide if f = g by selectingk values at random from a set of 2n (or more) possibilities, say from [1,2n], then comparing f(z) tog(z) for these k values. The computations can be kept to a reasonable size by doing the arithmeticoperations modulo randomly chosen small primes. In the computation of the product f(z) eachterm is bounded in absolute value by a+2n and hence the product is bounded by (a+2n)n. Thusaccording to [25] the primes have to be chosen approximately in the range [1; n log(a+ 2n)].We will now compare the two methods and show that regardless of the relative values of a andn, one method will always run in time o(n logn).27

www.manaraa.com

Comparison of methods 1 and 2: Recall that each multiset has at most n integers, each inthe range [0,a]. Also recall that if n > 2a bucket sort can be used to check the computation. Sinceword sizes in our model are O(log a), if n � 2a the primes in method 1 �t in a constant number ofwords. The number of words, w, required to hold a prime in method 2 is O(max(1; lognlog a)).The running time of method 1 is O(n log a). We need to perform log amultiplications to computemxi for each i. These are all constant time operations since the prime moduli are just a constantnumber of words long. The running time of method 2 is a function of the number of words, w, andis equal to nw2 since n multiplications are performed on numbers which are w words long. This isthe overriding cost of method 2.We now describe the transition from one method to another as a decreasing function of n. Whenn > 2a we use bucket sort. When n becomes less than 2a and as long as n log a is o(n logn) weuse method 1 which has running time O(n log a). For instance we could use method 1 as long asn is greater than alog log a. At this threshold value of n, logn is log a log log log a and hence log ais o(logn). When n dips below this threshold, the primes in method 2 �t in log log a words andmethod 2 runs in time O(n(log log a)2) Notice that in the most typical case for sorting, n < a, andfor this case method 2 runs in linear time. Thus all the algebraic �nagling is mainly to prove theexistence of a little oh checker for all relative values of n and a.6.3 Checking Matrix RankIn this subsection we describe a checker for matrix rank. Our checker for rank is mainly of theoreticalinterest. It satis�es the little oh property as required. However it makes O(n2) calls to the programbeing checked and hence would be highly ine�cient to implement in practice. Blum, Luby, andRubinfeld[7] have subsequently discovered a very practical checker for matrix rank. However, their28

www.manaraa.com

checker does not conform to the original de�nition of checking. Instead, they use the idea that if aprogram for matrix multiplication has been checked, then in checking rank, one can call the matrixmultiplication program and count the call as one step.We consider matrices,M , whose entries are drawn from some �nite �eld, F . Let P be a programwhich takes such a matrix as input and outputs an integer, r, which is supposedly the rank of M .We will describe here a checker for P . The checker is given an integer k in unary. k is the desiredcon�dence in the checker's output, i.e., the probability of the checker's being wrong should be atmost O(1=2k).We describe the checker in three parts. The �rst part of the checker produces an r x r submatrixof M which is supposedly of full rank. It does this by a process of self-reduction, using the programto obtain intermediate answers. Part 2 of the checker checks that the resulting r x r matrix isindeed of full rank. This incidentally proves that the rank of the original matrix M is at least r.Finally, we also need to ensure that the rank of M is no more than r and this is done by Part 3 ofthe checker.6.3.1 Self-ReductionLet M be an n x m matrix input to P and suppose P on M outputs r. Let u1; u2; :::; um be thecolumns of M .for i := 1 to m dodelete ui from M and feed the resulting matrix to Pif P says (the rank is) < r put ui backendforif the number of columns remaining 6= r return29

www.manaraa.com

`BUGGY'By self-reduction, we have obtained r column vectors which are supposedly linearly independent.Each of these r columns is an n-vector and by self-reduction on the rows of the n x r matrix thatwe have, we arrive at an r x r matrix which is supposedly of full rank. Of course, we do not wantto take the program's word that this matrix is of full rank. We need to check that this matrix isactually of full rank. Thus, even if the program returned some wrong answers in the course of thisself-reduction, we will detect this and declare that the program is bad. This is done in Part 2 ofthe checker.6.3.2 Lower Bounding the RankIf we have an r x r matrix of full rank, the columns of the matrix form a basis for F r . In this case,every vector in F r has a unique representation as a linear combination of the column vectors of thematrix. In this part of the checker, we exploit the uniqueness of the representation.Let v1; :::; vr be the columns of the r x r matrix which is supposedly of full rank. The idea is tocreate k linear combinations, x1; x2; :::; xk of the r columns of the matrix. Suppose, for example,that x1 = c1v1 + c2v2 + : : :+ crvr:We toss a fair coin. If it comes up heads we subtract c1v1 from x1. Otherwise, we choose a randoma 6= c1 in F and subtract av1 from x1.We expect that x1�c1v1 cannot replace v1 in the basis, but x1�av1 can if a 6= c1. This is clearlytrue if the vi form a basis. Suppose now that the vi do not form a basis. Then, let vj be the �rst ofthe vi's that has a non-zero coe�cient in a dependence relation among the vi's. vj could have any30

www.manaraa.com

coe�cient at all in a linear combination to produce x1 and this coe�cient of vj is not a�ected bythe values of coe�cients for v1 through vj�1. Thus the program has no way of distinguishing thesituation when we subtract cj times vj , from the situation when we subtract some other multipleof vj . Thus, for each linear combination xi the program has only a probability of 1/2 of escapingundetected if it is wrong about its claim that v1; v2; :::; vr are independent. The above ideas yieldthe required algorithm which is described below:Generate k random linear combinations of v1; :::; vr.Let these k random combinations be x1; :::; xk.for i :=1 to k dofor j :=1 to r dobeginToss a fair coin;if Heads theny := xi � cjvjelse y := xi � avj where a is random 6= cjReplace vj by y in the original matrixand ask the program for the rank of this new matrix.if Heads and (rank 6= r � 1) return `Program is bad'.if Tails and (rank6= r) return `Program is bad'.endforendfor 31

www.manaraa.com

It is clear that a program that wrongly claims that v1; v2; :::; vr are independent has at most aprobability of 1=2k of escaping detection.6.3.3 Upper Bounding the RankWe go back to the original matrix M with columns u1; u2; :::; um. By self-reduction we are leftwith r columns, say, u1; : : : ; ur which are supposedly linearly independent in n-dimensional space.We randomly pick vectors xr+1; : : : ; xn such that the vectors u1; : : : ; xn form a basis for the ndimensional space. We use the program's help in deciding if the set of n columns we have, are offull rank. If the program says they are not, we redo the experiment of picking vectors, xr+1; : : : ; xn.We have the following lemma:Lemma 6.2 If a1; : : : ; ar are independent, then with probability greater than a positive constant (12 �34 � 78 � � � = :28 � � �), the n vectors obtained by augmenting a1; : : : ; ar with random vectors br+1; : : : ; bnform a basis for Fn.Proof: The worst-case occurs when F is GF (2) and r = 0 i.e., when we are required to build upthe random basis from scratch. In this case the number of good choices for the ith vector (out of atotal of 2n choices) is (2n � 2i�1). This works out to a probability of (1� 12n+1�i) for the ith vectorto be independent of the �rst i� 1. This yields the result in the lemma.It is clear from the above lemma that each random trial has a constant probability of succeeding,i.e., producing a basis. If we perform this experiment O(k) times and the program always says thatthe set of vectors is dependent, we report that the program is buggy. We know that we will be32

www.manaraa.com

correct in doing so with overwhelming probability. There is however, a small chance (< 1=2k), thatthe program is right but we were unlucky enough not to hit upon any basis.Next, we need the following lemma.Lemma 6.3 If ur+1; : : : ; un are dependent on u1; : : : ; ur then any linear combination of ur+1; : : : ; unis dependent on u1; : : : ; ur. If one of ur+1; : : : ; un is not dependent on u1; : : : ; ur then a randomlinear combination of ur+1; : : : ; un is dependent on u1; : : : ; ur with probability at most a half.Proof: The �rst statement of the lemma is obvious. For the second part, suppose that ur+j isindependent of u1; : : : ; ur. Then if some linear combination x is dependent, changing the coe�cientof ur+j to anything else besides the one in x will make the new vector independent. This countingestablishes that there are at least as many independent combinations as dependent ones, equalityoccurring in the case of a vector space over GF(2).By lemma 6.3 it su�ces to check that k random linear combinations,y1; : : : ; yk, of ur+1; : : : ; un,are dependent on u1; : : : ; ur. This will ensure that with probability � 1 � 1=2k the program iscorrect.Suppose one of y1; : : : ; yk, say y1, is independent of u1; : : : ; ur. We will denote y1 by y in whatfollows. Let the unique expression of y as a linear combination of u1; : : : ; ur; xr+1; : : : ; xn bey = rXi=1 ci � ui + nXi=r+1 ci � xiLemma 6.4 In the above representation of y each ci for r + 1 � i � n has a probability1 � 12 ofbeing nonzero.1This probability is over the choice of the random extension of the basis, xr+1; : : : ; xn. Although the program hassome inuence over the distribution of these random extensions, the statement of the lemma still holds.33

www.manaraa.com

Proof: Let Vi be the vector space generated by the �rst i vectors in the basis. Let W be thecomplement of Vr. By taking appropriate components of vectors in W our problem can be restatedas follows: Suppose we have a random basis z1; : : : ; zl forW , an l-dimensional space, and a non-zerovector y in W . For each basis vector its coe�cient in the unique representation of y as a linearcombination of the basis vectors will be non-zero with probability � 12 .We now prove the above statement. Having a �xed vector with respect to a random basis canbe thought of as equivalent to having a random vector with respect to a random basis. For, let Abe a random non-singular l x l matrix. Consider the 1-1 correspondence from the set of bases tothe set of bases that takes the basis, z1; : : : ; zl to the basis, Az1; : : : ; Azl. Let y0 = Ay be the imageof y under the linear transformation A. By the non-singularity of A, y0 is a random vector in Wand the new basis is a random basis of W because of the 1-1 correspondence above.Now given a basis, a random vector in W is generated by randomly picking coe�cients for thebasis vectors. Thus, for a random vector, the probability that any coe�cient is zero is � 12 . Thisresult can be translated back to the �xed vector y.As a result of lemmata 6.3 and 6.4 we note that if ur+1; : : : ; un are not all dependent onu1; : : : ; ur, then with very high probability, one of y1; : : : ; yk can replace one of xr+1; : : : ; xr+k inthe basis, u1; : : : ; ur; xr + 1; : : : ; xn. This idea yields the following checker.for i := 1 to kfor j := k + 1 to k + rrepeat k timesToss a fair coin;if Heads then 34

www.manaraa.com

w := a random linear combination of the original basiswith a non-zero coe�cient for xjelsew := a random linear combination of theoriginal basis, without xjand with yi having a non-zero coe�cient.Replace xj by w and feed the resulting matrix to P ;if Heads and rank 6= r reject program;if Tails and rank 6= r � 1 reject program;endrepeatendforendforIt is clear that if the program was wrong in its original claim that ur+1; : : : ; um were dependentit can escape detection with probability at most 1=2k. Thus the checker has an error probabilityof O(1=2k) in a number of places. The overall probability of error is bounded by the sum of theseprobabilities and is therefore O(1=2k).6.3.4 Analysis of Running TimeThe most expensive operation is the creation of random linear combinations of many vectors. Carehas been taken here to keep the number of such operations down. Part 1 of the checker, the self-reduction, runs in O(n) time. In part 2, generating k linear combinations takes time O(kn2). The35

www.manaraa.com

loop is repeated O(nk) times and each run of the loop takes time O(n). Thus the overall runningtime of part 2 is O(kn2). In part 3, generating the random basis takes O(kn2) time since we mightgenerate kn di�erent vectors before we �nish. Creating k linear combinations again takes O(kn2)time. The bottleneck however is the loop which is repeated O(k3) times, each pass taking O(n2)time. Thus the overall complexity of the checker is O(k3n2).A point of discussion is the amount of time charged to each call of the program. The aboveanalysis has been made with each call being charged 1 step. This can be justi�ed at least in thetheoretical sense as follows: We assume a model in which the checker has a query tape to writedown instances on which the program is run. Each call to the program could justi�ably be chargedthe amount of time it takes to modify the query tape in order to produce the new instance fromthe previous instance queried. It is then possible to use suitable data structures to implement suchmodi�cations in O(1) steps in all of the above computation.7 Checker Characterization TheoremIn this section we characterize the set of problems that can be checked in polynomial time. For thepurposes of this section a checker running in polynomial time will be called e�cient.We take as our de�nition of IP (Interactive Proof-System) the de�nition appearing in Gold-wasser, Micali, and Racko� [19], except that we replace `for all su�ciently large x' in that de�nitionby `for all x'. This modi�cation of [19] conforms with the commonly accepted de�nition of IP as itappears, for example, in Goldwasser and Sipser [20], and Tompa and Woll [37].De�ne function-restricted IP (CO-function-restricted IP) = the set of all decision problems,�, for which there is an interactive proof system for YES-instances (NO-instances) of � satisfying36

www.manaraa.com

the conditions that prover (= any honest prover) must compute the function � and prover (= anydishonest prover) must be a function from the set of instances of � to fYES, NOg. This restrictionimplies two things:1. veri�er may only ask questions that are instances of �, and2. prover (and prover) must answer each of veri�er's questions with an answer that is independentof prover's (prover's) previous history of questions and answers.Theorem 7.1 An e�cient program checker C� exists for decision problem � , � lies in function-restricted IP \ CO-function-restricted IP.The proof of the above theorem is immediate from the de�nitions of e�cient program checkersand the complexity class function-restricted IP.Let NP-search denote the class of problems � such that �(x) =NO if x is a NO-instance; YEStogether with a proof that x is a YES-instance, otherwise.Corollary 7.1 Let � be an NP -search problem. An e�cient program checker C� exists for � , �is in function-restricted co-IP.The main purpose of the above corollary is to point out that if NP 6� CO-function-restrictedIP, as seems likely, then there can be no e�cient program checker C� (in the above sense) forNP -complete problems! Note that the results of Lund et al. [30] and Shamir[36] do not givefunction-restricted IP proofs for NP-complete languages.37

www.manaraa.com

8 Overview and ConclusionsThe thrust of this paper is to show that in many cases, it is possible to check a program's output ona given input, thereby giving quantitative mathematical evidence that the program works correctlyon that input. By allowing the possibility of an incorrect answer (just as one would if computationswere done by hand), the program designer confronts the possibility of a bug and considers whatto do if the answer is wrong. This gives an alternative to proving a program correct that may beachievable and su�cient for many situations.One way to develop this theory would be to require that the program checker itself be provedcorrect. This paper, however, is about pure checking, meaning no proofs of correctness whatsoever.Instead, we require the checker C to be di�erent from the program P that it checks in two ways:First, the input-output speci�cations for C are di�erent from those for P (C gets P 's output andit responds CORRECT or BUGGY). Second, we demand that the running time of the checker beo(S), where S is the running time of the program being checked. This prevents a programmer fromundercutting this approach, which he could otherwise do by simply running his program a secondtime and calling that a check. Whatever else the programmer does, he must think more about hisproblem.9 AcknowledgementsWe are grateful to Ronitt Rubinfeld for many long conversations and marvelous ideas, includingher extension of our checking ideas to parallel computation. She, Sandy Irani, and Raimund Seidelhave designed interesting checkers for various problems in computational geometry such as convexhull. We wish to thank them as well as Russell Imapagliazzo, Sha� Goldwasser, and Len Adleman38

www.manaraa.com

for their ideas and enthusiastic support.References[1] L. Adleman, M. Huang, and K. Kompella. E�cient Checkers for Number-Theoretic Problems.Submitted to Information and Computation.[2] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System, and a Hierarchyof Complexity Classes. J. Comput. System Sci. 36 (1988), 254{276.[3] J. Barwise. Mathematical Proofs of Computer System Correctness. Notices of the AMS, vol.36, number 7 (1989).[4] D. Beaver and J. Feigenbaum. Hiding Instances in Multioracle Queries. In Proceedings ofthe 7th Symposium on Theoretical Aspects of Computer Science. Lecture Notes in ComputerScience, vol. 415, Springer, Berlin (1990), 37{48.[5] R. Beigel and J. Feigenbaum. On Being Incoherent Without Being Very Hard. ComputationalComplexity 2 (1992), 1{17.[6] M. Blum and S. Kannan. Designing Programs That Check Their Work. In Proceedings of the21st ACM Symposium on Theory of Computing (Seattle, Wash. May 15{17). ACM, New York,(1989), 86{97.[7] M. Blum, M. Luby, and R. Rubinfeld. Self-Testing and Self-Correcting Programs with Applica-tions to Numerical Problems. In Proceedings of the 22nd Symposium on Theory of Computing(Baltimore, MD. May 14{16). ACM New York (1990), 73{83. Final version to appear in J.Comput Syst. Sci. 39

www.manaraa.com

[8] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the Correctness ofMemories. Proceedings of the 32nd Symposium on Foundations of Computing (San Juan, PROct. 1{4). IEEE Computer Society, Los Alamitos (1991), 90{99. Final version to appear inAlgorithmica.[9] R.S. Boyer and J.S. Moore. The Correctness Problem in Computer Science. Academic Press,London (1981).[10] T.A. Budd and D. Angluin. Two notions of Correctness and Their Relation to Testing. ActaInformatica, 18 (1982) 31{45.[11] S.A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Information and Control,64 (1985), 2{22.[12] R.A. DeMillo, W.M. McCracken, R.J. Martin, and J.F. Passa�ume. Software Testing andEvaluation. The Benjamin Cummings Publishing Company, Redwood City (1987).[13] R.A. De Millo, R.J. Lipton, and A.J. Perlis. Social Processes and Proofs of Theorems andPrograms. Comm. ACM, 22 No. 5 (1979).[14] J. Feigenbaum. Locally Random Reductions in Interactive Complexity Theory. In Advances inComputational Complexity, DIMACS Series in Discrete Mathematics and Theoretical Com-puter Science, vol. 13, AMS, Providence (1993), 73{98.[15] J. Feigenbaum and L. Fortnow. Random-Self-Reducibility of Complete Sets. SIAM J. Comput.,22 (1993), 994{1005.[16] R. Freivalds. Fast Probabilistic Algorithms. In Springer Verlag Lecture Notes in CS #74,Mathematical Foundations of CS (1979), 57{69.40

www.manaraa.com

[17] M. Furst, J.E. Hopcroft, E. Luks. Polynomial-Time Algorithms for Permutation Groups. InProceedings 21st IEEE Symposium on Foundations of Computer Science. IEEE ComputerSociety, Los Alamitos (1980), 36{41.[18] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity orAll Languages in NP Have Zero-Knowldege Proof Systems. J. ACM, 38 (1991), 691{729.[19] S. Goldwasser, S. Micali, and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM J. Comput., 18 (1989), 186{208.[20] S. Goldwasser and M. Sipser. Public Coins vs. Private Coins in Interactive Proof Systems.In Advances in Computing Research | vol. 5: Randomness and Computation, JAI Press,Greenwich (1989), 73{90.[21] D. Gorenstein. Finite Simple Groups | An Introduction to Their Classi�cation, Plenum Press,New York (1982).[22] C.M. Ho�mann. Group-Theoretic Algorithms and Graph Isomorphism, Vol. 136 of the series,Lecture Notes in Computer Science, ed. G. Goos and J. Hartmanis, Springer-Verlag, Berlin(1982).[23] R. Kannan. personal communication through S. Rudich.[24] S. Kannan and A.C. Yao. Program Checkers for Probability Generation. Proceedings Inter-national Colloquium on Automata, Languages and Programming, (Madrid, Spain, Jul. 8{12),Springer-Verlag, Berlin (1991), 163{173.[25] R.M. Karp and M.O. Rabin. E�cient Randomized Pattern Matching Algorithms. IBM Journalof Research and Development, 31(2) (1987), 249{260.41

www.manaraa.com

[26] R.M. Karp and V. Ramachandran. Parallel Algorithms for Shared-Memory Machines. In Hand-book of Theoretical Computer Science, vol. A: Algorithms and Complexity, Elsevier, Amster-dam (1990), 869{941.[27] Ker-I Ko. On Helping by Robust Oracle Machines. TCS, 52 (1987), 15{36.[28] J.S. Leon. Computing Automorphism Groups of Combinatorial Objects. In ComputationalGroup Theory ed. M.D. Atkinson, Academic Press, London (1984), 321{335.[29] R. Lipton. New Directions in Testing. In Distributed Computing and Cryptography, DIMACSseries in Discrete Mathematics and Theoretical Computer Science, vol. 2, AMS, Providence(1991), 191{202.[30] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods for Interactive ProofSystems. J. ACM, 39 (1992), 859{868.[31] R.A. Mathon. A Note on the Graph Isomorphism Counting Problem. IPL 8 (1979) 131{132.[32] G. Polya and R.C. Read. Combinatorial Enumeration of Groups, Graphs, and Chemical Com-pounds, Springer-Verlag, Berlin (1987).[33] M.O. Rabin. Probabilistic Algorithms. In Algorithms and Complexity, Recent Results and NewDirections, ed. J.F. Traub, Academic Press (1976), 21{40.[34] R. Rubinfeld. Designing Checkers for Programs that Run in Parallel. Tech. Report TR-090-040,International Computer Science Institute, Berkeley, August, 1990.[35] U. Sch�oning. Robust Algorithms: A Di�erent Approach to Oracles. TCS, 40 (1985), 57{66.[36] A. Shamir. IP = PSPACE. J. ACM, 39 (1992) 869{877.42

www.manaraa.com

[37] M. Tompa and H. Woll. Random Self-Reducibility and Zero Knowledge Interactive Proofs ofPossession of Information. In Proceedings 28th IEEE Symposium on Foundations of ComputerScience, IEEE Computer Society, Los Alamitos, 1987, 472{482.[38] W.J. Weyuker, The Evaluation of Program-Based Software Test Data Adequacy Criteria, Com-munications of the ACM, 31 6, 668{675 (1988).[39] M.N. Wegman and J.L. Carter, New Hash Functions and Their Use in Authentication and SetEquality, J. of Computer and System Science, 22 3, 265{279 (1981).

43

